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Abstract: Promoting the safety of commercial trucks by identifying countermeasures that eliminate/reduce the effect of factors that in-
crease the severity of truck-related crashes is crucial. Crash causal factors for rural interstate roads, located within the mountain plains, are
inherently unique compared to urban interstate roads. This is due to the presence of challenging road geometry coupled with severe weather
conditions and high truck traffic volumes. This study investigated Interstate 80 in Wyoming using decision trees, as a data mining approach,
and structural equation model (SEM) as a latent factor modeling approach. SEM was employed to clarify the direct and indirect relation-
ships between endogenous and exogenous variables while accounting for the variation and covariation within and between the constructed
measurement models. Crash severity data were processed to account for factors affecting single vehicles and multivehicle trucks. The results
showed that the interaction with surrounding traffic was the most significant latent variable affecting the crash severity of multivehicle
truck crashes, while adverse weather conditions were the most significant latent variable affecting the crash severity of single-truck crashes.
The results of this study highlighted the importance of increasing the situational awareness of commercial truck drivers with upcoming
hazardous events. This could be performed by communicating information using variable message signs, the 511 application, the com-
mercial vehicle operator portal (CVOP), or the connected vehicle (CV) technologies. DOI: 10.1061/JTEPBS.TEENG-7446. © 2023
American Society of Civil Engineers.
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Introduction

Traffic safety and mobility of commercial trucks seized the atten-
tion of many researchers due to their high importance for freight
movement, industrial development, and the national economy.
Commercial trucks were responsible for transporting nearly 64%
of the total US freight tonnage in 2015, representing 69% of
the total freight value (Worth et al. 2016). An increase of 10%
in large-truck-related fatal crashes for 2017 was observed com-
pared to 2016 (i.e., 4,251 to 4,657 total crashes) (Federal Motor
Carrier Safety Administration 2019). Moreover, increases of 5%
and 3% were observed for truck-related injury and property
damage-only crashes, respectively. Additionally, large-truck fatal-
ities per 100 million vehicle miles traveled (MVMT) increased by

6% from 1.48 in 2016 to 1.56 fatalities per MVMT in 2017. Trucks
have a substantial effect on the surrounding traffic as a result of
their interfering effect (Moridpour et al. 2015). It is expected that
the freight tonnage will be doubled in the coming 30 years (DOT
2020). This increase in truck traffic may pose traffic safety issues.

The National Highway Traffic Safety Administration (NHTSA)
indicated that Wyoming had an increase of 3% in fatal crashes in
2017 compared to 2016 (2018 Fatal Motor Vehicle Crashes: Over-
view 2019). According to the Wyoming Department of Transpor-
tation (WYDOT), a 13% increase in truck-related crashes for the
year 2018 was reported (Wyoming DOT 2018). Interstate 80 (I-80)
is considered one of the main freight corridors in Wyoming. It has a
total length of 402 miles and is located in southern Wyoming. It
connects the east and west borders of Wyoming. The corridor is
characterized by adverse weather conditions, challenging roadway
geometry, and high truck traffic. The percentage of truck traffic on
I-80 reaches 55% of the total annual average daily traffic (AADT).
A steady increase in truck-related crashes was observed on I-80 in
Wyoming. The crash rate per MVMT in 2012 was 0.67, which
increased to 0.76 in 2014 and spiked to 1.02 crashes per MVMT
in 2016. In 2018, the crash rate for truck-related crashes onWyoming’s
I-80 increased to become 1.04 crashes per MVMT.

Several studies were conducted on I-80 with a focus on promot-
ing the safety and mobility of commercial trucks, emphasizing the
need to thoroughly investigate the factors affecting truck crashes in
Wyoming (Ahmed et al. 2019, 2020; Gaweesh et al. 2021a, b,
2019; Gaweesh and Ahmed 2020; Irfan Ahmed et al. 2020; Khoda
Bakhshi et al. 2021; Raddaoui et al. 2020).

Several statistical techniques have been used to investigate
the severity of historical crashes. Observed variables are mainly
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analyzed to estimate the direct relationship between the indicator
variables and the dependent variable. Moreover, the discrete model
analysis was utilized to conduct the crash severity analysis and is
considered the most dominating approach. Despite the selection of
the model type and its underlying assumptions, the complex inter-
relationship between crash variables cannot be observed (Lee et al.
2008). To overcome this limitation alternative statistical approaches
could be used to provide further insights about the investigated
crash data. Latent variable analysis as well as data mining ap-
proaches could be potential alternatives to investigate the severity
of crashes. For instance, a structural equation model (SEM) is a
technique in which indicator variables are factored together to mea-
sure unobserved latent variables. It can resolve the complex rela-
tionship between the indicator variables (Wang and Qin 2014).
Additionally, it assesses the effectiveness of the indicator variable
to measure latent constructs. Data mining techniques are superior in
predicting future crash trends and severities compared to traditional
statistical approaches. They have the ability to analyze large and
complex datasets, while explaining the relationships between the
indicators and the response variable.

Crashes on rural roads are generally more severe compared to
urban road crashes due to differences in operating speeds, road geom-
etry, functionality, and enforcement levels. Adding the complication
of encountering severe weather events as well as high truck traffic
volumes will raise the need to conduct several studies to alleviate
the safety of such rural corridors. However, several studies focused
on crash severity in rural interstates (Cafiso et al. 2010; Chen et al.
2016; de Oña et al. 2013; Siskind et al. 2011), but none of the in-
vestigated corridors had the unique characteristics of the I-80 corridor
in Wyoming. Additionally, most of the utilized statistical approaches
accounted for observed variables only, which might not clarify the
indirect effects that might increase the crash severities of large trucks.

This study utilized decision trees as a data mining technique as
well as the SEM to identify the variables that affect the crash se-
verity of large trucks. It developed insights into the most effective
indicator variables that affect the severity of truck crashes. In ad-
dition, observed variables that might be used to measure the latent
variables affecting crash severity were identified. Unlike other stud-
ies that utilized one observed variable to indicate the crash severity,
this research introduced a new measure to quantify the severity of
truck crashes. Direct and indirect effects on large-truck crash se-
verity were identified from the developed SEMs. Furthermore,
not only hypothetical assumptions were used to develop the meas-
urement model but also exploratory factor analysis (EFA) and con-
firmatory factor analysis (CFA) were used to provide a systematic
approach to identify latent variables to develop the path model. The
research considered both; crash and vehicle level in the analysis, in
which commercial trucks were the considered vehicle type in the
analysis. Additionally, the difference between the factors affecting
single-truck crashes and multivehicle truck crashes was accounted
for by developing two separate models for the two vehicle-level
analyses.

The advantage of utilizing the SEM is its ability to interpret
causal relationships involving factors that cannot be directly mea-
sured or observed. These unobserved variables are called latent
variables. The adoption of SEM is needed to investigate factors
associated with the crash severity of large trucks as not all crash
factors can be directly accounted for despite having numerous var-
iables and data indicators.

Background

Many studies were conducted with a focus on determining the
causal factors and predicting the severity of truck-related crashes.

A broad variety of statistical approaches were employed to identify
factors that might increase truck crashes. Parametric, nonparamet-
ric, Bayesian, and latent class analysis were the main statistical
approaches adopted to conducting the analysis. The mentioned stat-
istical approaches analyze the crash data differently, clarifying the
factors that might increase the outcome severity of the investigated
type of crash from multiple perspectives.

Parametric Approaches

Truck crashes are usually investigated by separating the data into
two main categories, single and multivehicle truck crashes, as the
factors affecting the outcome crash injury severity were different
(Chen and Chen 2011, 2013; Geedipally and Lord 2010; Islam
et al. 2014; Lemp et al. 2011; Naik et al. 2016).

A study included driver behavior factors along with variables
extracted from crash reports utilizing an ordered probit model
(Zhu and Srinivasan 2011). Among the several significant varia-
bles, dummy variables that indicated missing data showed a strong
significance toward increasing crash injury severity, which could be
due to the gaps in crash reporting or due to the unobserved hetero-
geneity in the data. However, the study concluded a limitation of
the small sample size used in the analysis. Another study provided a
comparative analysis of factors affecting the crash severity of large
trucks using the ordered logit model (Taylor et al. 2018). The study
showed that variables related to roadway, crash, vehicle, and driver
had a significant effect on the investigated crash severity. Among
the significant variables, the season, manner of collision, lighting
conditions, driving under the influence, and percentage of truck
traffic were significant. Uddin and Huynh (2017) used a random
parameters logit model to investigate the crash severity of crashes
involving a truck (Uddin and Huynh 2017). The study concluded
that adverse weather and challenging roadway geometry were sig-
nificant variables in increasing the severity of crashes involving a
truck. The results of the study were in accordance with Naik et al.
(2016). The latter study utilized random parameters ordinal and
multinomial regression models.

Nonparametric Approaches

Data mining approaches were also adopted to investigate the crash
severity of commercial trucks. A recent study used gradient boosting
to evaluate the truck crash injury severity (Zheng et al. 2018). The
analyzed crash data were obtained from two states, North Dakota
and Colorado. The study accounted for the scale of the trucking
company as a predicting variable. The results showed that small-
scale companies had the lowest probability of crash risk.

Another study accounted for the spatial concentrations of large-
truck crashes in which granular level land use and urban design
factors were considered in the analysis (Tahfim and Yan 2022). The
study utilized the density-based spatial clustering of application
with noise (DBSCAN) to explore the effect of housing, population,
employment, and road network density attributes along with the
crash characteristics on increasing the severity of truck-related
crashes. The study showed that high road network density and
medium and high population density were associated with nonse-
vere injuries.

Bayesian Approaches

Additionally, Bayesian logistic models were adopted to conduct crash
severity analysis (Ahmed et al. 2018). The study included a factor
expressing the presence of large trucks in the model and utilized in-
teractions to account for factors affecting the severity of truck crashes.
The results of the study showed that adverse weather and steep
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downgrades would increase the severity of truck-related crashes.
Another study utilized the hierarchical Bayesian models to investigate
the between-crash variance and within-crash correlations for large
trucks on rural corridors (Chen et al. 2016). The study clarified that
road curve, vehicle damage in a crash, number of vehicles in a crash,
wet road surface, vehicle type, driver age, driver gender, driver,
seatbelt use, and driver alcohol or drug involvement are among the
significant variables that increase the severity of truck crashes.
Missing data and interactive effects between variables were among
the limitations mentioned in the study.

Latent Class Models

Latent variables, which are unobserved variables, could help in
clarifying the complex interrelationship between the crash indicator
variables. The SEM could be considered a promising statistical ap-
proach that accounts for these interrelationships. It could quantify
latent variables that cannot be directly measured or observed. SEM
was previously used to analyze survey data and to assess driver
behavior questionnaires (Ambak et al. 2010; Farag et al. 2007;
Hamdar et al. 2008; Hassan and Abdel-Aty 2013; Shaaban et al.
2018, 2020). Recently, SEM was adopted to investigate the result-
ant severity of crashes (Barman and Bandyopadhyaya 2020; Cho
et al. 2017; Dong et al. 2022; Wang and Qin 2014). The study con-
cluded that injury severity and vehicle damage could be used as
indicator variables to measure crash severity. Three SEM models
with one, two, and three latent variables were developed. The re-
sults showed that the SEM with the two latent variables provided
the best model fit. Another study developed an SEM to estimate
truck-crashes severity (Cho et al. 2017). The developed SEM was
factored into five latent variables named crash, environment, road,
driver, and severity. However, the development of the measurement
model was based on hypothetical assumptions, and it provided re-
liable results. The results showed that crash severity could be mea-
sured using the number of deaths, the number of injured, and the
number of cars involved in the crash. Kim et al. (2011) examined
the effect of accessibility on crash severity (Kim et al. 2011). It
was found that accessibility had a reverse effect on crash severity.
Increased accessibility would reduce the crash severity. A recent
study conducted a comprehensive analysis framework utilizing
SEM as well as random parameters model to investigate the se-
verity of crashes involving large trucks on mountainous interstate
roads (Gaweesh et al. 2023). The study identified direct and indi-
rect effects on the crash severity of large trucks in which challeng-
ing roadway conditions were found to have an indirect effect on
crash severity for single-truck crashes. Khattak and Targa (2004)
utilized an ordinary least-square regression (OLS) to examine the
risk factor affecting the large-truck-related crashes (Khattak and
Targa 2004). The authors found that dangerous truck-driving be-
haviors, speeding, and reckless driving would increase the proba-
bility of truck rollover. The OLS is a similar statistical technique to
the SEM. However, the SEM is considered a superior statistical
model due to the better model fit, higher precision, and accuracy.
The measures used to assess the model fitness and precision/
accuracy were Chi-Square/df and root mean square error of approxi-
mation (RMSEA) in which values from the SEMwere lower than the
values obtained from the OLS (Nazim and Ahmad 2013).

Data Collection

Truck-related crash data on Interstate 80 (I-80) in Wyoming was
extracted from the crash reports preserved by the WYDOT.
Truck-related crashes that occurred on I-80 for the years 2009
to 2016 were utilized in this study. Truck-related crashes refer

to crashes that involved at least one truck in the crash. Crash data
were processed and subdivided into two datasets for further inves-
tigation. The two subdivisions were (1) single-truck crashes where
only one truck was involved in a crash; and (2) multivehicle truck
crashes, where more than one vehicle was involved in the crash
including at least one truck. Crashes with missing outcome severity
were eliminated from the utilized dataset and represented 2.3% of
the dataset. For missing values for indicator variables, data impu-
tation using mean substitution was adopted. Mean substitution has
the advantage of retaining the sample mean for that variable.

The total number of single-truck crashes used in this study was
2044 crashes, while 1968 multivehicle truck crashes were included
in the analyses. In addition to crash data, roadway geometry data,
extracted from the Wyoming Roadway Data Portal (WRDP), were
linked to the crash data. This dataset includes information about the
roadway geometry, pavement type, number of lanes, median char-
acteristics, and countermeasures information. Traffic data were also
extracted from the monthly traffic data reports published by the
WYDOT. It should be clarified that the traffic data used in this
study were the hourly traffic volumes. Unlike aggregate traffic data,
the hourly traffic volume data express the actual traffic encountered
while the crash occurred. Although an extensive effort was con-
ducted to collect the hourly volume of crashes from 2009 to 2016,
it provided a disaggregate level of traffic interaction, providing
more reliable results compared to aggregate traffic data.

Fig. 1 shows a heat map for the truck-related crashes that occur
on I-80. The upper section of Fig. 1 shows the distribution of
crashes along I-80 for single-truck crashes and the lower part shows
the multivehicle truck crashes. The provided heatmap is weighted
using the crash severity. It could be observed from the developed
heatmap that the concentration of single-truck crashes was located
in the Elk Mountain section between milepost (MP) 235 and MP
290. Additionally, the concentration of multivehicle truck crashes
was located at the Laramie–Cheyenne section, MP 316 to MP 335,
and the Green River section, MP 85 to MP 110, as well as the Elk
Mountain section. These sections are characterized by challenging
roadway geometry and harsh weather conditions compared to the
other sections of the corridor.

Table 1 shows the descriptive statistics of the collected datasets
used in this study. Data were categorized into several categories to
easily explore the indicator variables. The first category included
indicator variables related to crash injury severity. These variables
included the manner of collision and the number of injured person-
nel in the crash as well as the number of fatalities. The roadway
factors category included several indicator variables that express
the roadway geometry, pavement type, and cross section elements.
The temporal category included the traffic volumes and the season
in which the crash occurred. The season variable was considered
in the analysis as it accounts for the seasonal variation in crash
frequencies. Each year was divided into two seasons: summer and
winter, in which each crash was assigned to the summer or winter
according to the date it occurred. Crashes that occurred from April
15th to October 15th were considered summer season crashes,
while other crashes were considered winter crashes. Lighting con-
ditions, roadway surface conditions, and weather reported in the
crash reports were the indicator variables for the environment data
category. The truck type was included as one of the indicator var-
iables for the crash characteristics category. It was categorized as a
binary variable, heavy truck, and other. A heavy truck is identified
as a heavy vehicle with a gross vehicle weight rating (GVWR)
greater than 26,000 lbs. The medium and light trucks were com-
bined into the other level of the truck type variable. Driver and
roadway treatments were the last two categories in the dataset.
The driver category indicates the truck driver characteristics,
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Table 1. Descriptive statistics of the investigated indicator variables

Category Name

Description MV truck (1,968 crashes) SV truck (2,044 crashes)

Variable Categories Avg. (%) SD Min. Max. Avg. (%) SD Min. Max.

Crash severity Fatal Outcome severity 253 crashes 7.72 — — — 4.94 — — —
Injury 586 crashes 19.87 — — — 9.54 — — —
PDO 3,173 crashes 72.41 — — — 85.52 — — —
Total 4,012 crashes 49.05 — — — 50.95 — — —
NInj Number of injured (integer) 0.181 0.478 0 4 0.403 0.834 0 10
Nkill Number of killed (integer) 0.003 0.058 0 1 0.023 0.190 0 5

Crash type ManCol Manner of collision
(categorical)

1: Front-to-Rear 40.70 — — — — — — —
2: Front-to-Front 1.52 — — — — — — —
3: Angle 18.65 — — — — — — —
4: Sideswipe 31.15 — — — — — — —
5: Other 7.98 — — — 100 — — —

Roadway
factors

Grade Road grade-%- (Cont.) 0.06 2.02 −6.21 5.49 −0.11 1.87 −6.59 5.49
Delta Deflection angle-degrees- (Cont.) 9.32 17.29 0 88.47 9.60 17.00 0 88.47

MedWid Median width-feet- (integer) 101 110 18 956 127 145 18 956
MedTyp Median type

(nominal)
0: Depressed 68.26 — — — 72.78 — — —
1: Raised 31.74 — — — 27.22 — — —

Nlanes Number of lanes (integer) 2.095 0.312 2 5 2.079 0.275 2 5
SHTYP Shoulder pavement

type (binary)
0: Asphalt 72.96 — — — 78.67 — — —
1: Concrete 27.04 — — — 21.33 — — —

LnTyp Lanes pavement type
(nominal)

0: Asphalt 48.43 — — — 53.52 — — —
1: Concrete 51.57 — — — 46.48 — — —

Temporal Season Season of the year
(binary)

0: Summer 20.69 — — — 34.15 — — —
1: Winter 79.31 — — — 65.85 — — —

HrVol Hourly volume-VPH- (Cont.) 519.7 556.6 22.9 4,518 494.4 588.1 27.4 4,391
TVol Truck hourly volume-VPH-(Cont.) 243.1 272.2 10.4 2,426 225.7 272.4 12.1 2,148

Environ. Lcond Lighting condition 0: Daytime 71.72 — — — 56.73 — — —
1: Nighttime 28.28 — — — 43.27 — — —

Rcond Road surface
condition (nominal)

0: Dry 39.00 — — — 25.42 — — —
1: Adverse 61.00 — — — 74.58 — — —

Rweath Reported weather
(binary)

0: Clear 52.03 — — — 37.36 — — —
1: Adverse 47.97 — — — 62.64 — — —

Fig. 1. Crash frequency heatmap for single and multivehicle truck crashes on I-80. [Sources: Esri, HERE, Garmin, USGS Intermap INCREMENT
P. NRCan, Esri Japan, METI Esri China (Hong Kong), Esri (Thailand), NGCC, © OpenStreetMap contributors and the GIS User Community.]
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while the roadway treatments indicate the existing countermeasures
implemented at the crash location. Table 1 provides the percentage
of each level for the categorical indicator variables, the mean, stan-
dard deviation, minimum, and maximum for the continuous and
integer indicator variables.

Methodology and Data Analysis

Decision Trees

A decision tree (DT) is a type of data mining method that has been
extensively utilized in traffic safety classification and regression
analysis (Song and Lu 2015). The analysis results in a status of
the class variable (response) that shows the highest number of cases
in the leaf node analyzed. Therefore, the number of rules can be
identified with the number of terminal nodes in the tree. This DT
is considered a classification analysis as the response variable is
nominal. Several researchers have utilized classification trees in
their safety studies, for instance, classification and regression tree
(CART) (Abellán et al. 2013; Chang and Chien 2013;Montella et al.
2012) and Chi-square automatic interaction detection (CHAID)
(Badea-Romero and Lenard 2013; Mohamadi Hezaveh et al. 2018;
Prati et al. 2017). CHAID DT technique utilizes the χ2-test of asso-
ciation to construct the tree by repeatedly splitting subsets of the
space into two or more child nodes beginning with the entire set.
The best split at any node is determined by merging any allowable
pair of categories of the predictor variables until there is no statisti-
cally significant difference within the pair with respect to the target

variable (Ture et al. 2009). In this study, the CHAID classification
task is undertaken to investigate single-vehicle and multivehicle
truck crashes separately.

Exploratory Factor Analysis

EFA was mainly used in this study to prespecify and develop the
exogenous and endogenous latent variables for the CFA. Applica-
tion of EFA and CFA on the same dataset should be avoided, as it
might hinder the external validity of the obtained factors (Hurley
et al. 1997). Accordingly, the EFA was conducted on 20% ran-
domly selected crash data (409 observations for the single-truck
crash data and 394 observations for the multivehicle truck crashes)
to provide a priori hypothesized patterns. A minimum of three in-
dicator variables were selected to measure a single latent variable to
avoid convergence issues. The extraction method used to conduct
the EFA was the generalized least squares (GLS) method, with a
Varimax orthogonal rotation method. A cutoff value of 0.4 was
used for the factor loading values (Hatcher and O’Rourke 2013).
The obtained Kaiser–Meyer–Olkin value (KMO) was found to be
0.695 and 0.764 for the single and multivehicle truck crash analy-
sis, respectively. The latent variables are considered well-factored if
the KMO value is above 0.5 (Shaaban et al. 2018, 2020). Table 2
shows the obtained factor loading for the EFA.

Confirmatory Factor Analysis

The CFA is distinguished from the EFA as it provides a more par-
simonious solution, which generates error variances resulting from

Table 1. (Continued.)

Category Name

Description MV truck (1,968 crashes) SV truck (2,044 crashes)

Variable Categories Avg. (%) SD Min. Max. Avg. (%) SD Min. Max.

Crash Char. TrTyp Truck type (Ordinal) 0: Other 3.19 — — — 9.45 — — —
1: Heavy 96.81 — — — 90.55 — — —

VehN # of crashed vehicles (integer) 2.12 0.75 2.00 5.00 1.00 0.00 1.00 1.00
Grdrail Guardrail 0: Absent 92.12 — — — 96.70 — — —

1: Presented 7.88 — — — 3.30 — — —
Speeding Above speed limit

+5 (binary)
0: No 92.68 — — — 93.47 — — —
1: Yes 7.32 — — — 6.53 — — —

Wild “FHE” Wildlife crash
(binary)

0: No 99.88 — — — 99.41 — — —
1: Yes 0.12 — — — 0.59 — — —

FxdObj “FHE” Hitting a fixed object
(binary)

0: No 93.79 — — — 82.52 — — —
1: Yes 6.21 — — — 17.48 — — —

WrkZn “FHE” Work zone crash
(binary)

0: No 99.68 — — — 97.63 — — —
1: Yes 0.32 — — — 2.37 — — —

Driver DUI Driving under the
influence (binary)

0: No 98.49 — — — 99.70 — — —
1: Yes 1.51 — — — 0.30 — — —

Gender Gender (binary) 0: Male 84.36 — — — 93.88 — — —
1: Female 15.64 — — — 6.11 — — —

Age Driver age (Cont.) 44.22 17.94 16 90 43.27 12.08 17 78

Roadway
treatments

RS Rumble strips
(binary)

0: No 69.11 — — — 58.21 — — —
1: Yes 30.89 — — — 41.79 — — —

SF Snow fence (binary) 0: No 74.43 — — — 69.19 — — —
1: Yes 25.57 — — — 30.81 — — —

VSL Variable speed limit
(binary)

0: No 52.61 — — — 51.55 — — —
1: Yes 47.39 — — — 48.45 — — —

CL Climbing lanes
(binary)

0: No 96.46 — — — 98.16 — — —
1: Yes 3.54 — — — 1.84 — — —

Note: MV = multitruck vehicle crashes; SV = single-vehicle truck crash; Ave = average; SD = standard deviation; Min. = minimum; Max. = maximum;
Cont. = continuous; Char. = characteristics; ManCol = manner of collision; NInj = number of injured; NKill = number of killed; MedWid = median width;
MedTyp = median type; Nlanes = number of lanes; SHTYP = shoulder type; LnTyp = lane pavement type; HrVol = hourly volume; TVol = truck volume;
Lcond = lighting condition; Rcond = road surface condition; Rweath = reported weather; TrTyp = truck type; VehN = number of crashed vehicles;
Grdrail = presence of guardrail; FHE = first harmful event; WrkZn = work zone; DUI = driving under influence; RS = rumble strips; SF = snow
fence; VSL = variable speed limit; and CL = climbing lanes.
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the conditional relationship among the indicator variables (Brown
2015). CFAwas used to determine the measurement model used to
conduct the path analysis of the SEM. The absence of multicolli-
nearity was checked by developing a multicollinearity matrix
where the r-squared was less than 0.8 (Brown 2015; Hatcher
and O’Rourke 2013). The selection of the indicator variables
should be supported by theory and the results of prior research evi-
dence. Hence, the selected variables were based on the EFA, results
of previous studies (Cho et al. 2017; Khattak and Targa 2004; Wang
and Qin 2014), and engineering judgment. The obtained results
from the CFAwere nearly similar to the EFA, which was expected.
The reliability of the indicator variables was assessed based on their
contribution to the measurement model. The percent of variance for
each indicator that was scrutinized by its latent variable is the index

of the item reliability, which is referred to as R2. The indicator var-
iables with an item reliability index greater than 0.39 are considered
ideal (Hatcher and O’Rourke 2013). Table 3 shows the obtained
values for the item reliability indices (R2), latent variables, and fac-
tored indicator variables.

Structural Equation Model

The SEM is mainly used as a statistical technique to analyze survey
questionnaire datasets (Brown 2015; Hassan and Abdel-Aty 2013;
Hurley et al. 1997; Shaaban et al. 2018). Recently, few studies uti-
lized this statistical technique to analyze crash data and to perform
real-time risk assessment (Cho et al. 2017; Kim et al. 2011; Ramos
2014; Wang and Qin 2014; Xu et al. 2018). SEM has several

Table 2. EFA obtained latent variables from the EFA analysis

Indicator variable

Factor number and loading value

Single-truck crashes Multivehicle truck crashes

Factor#1 Factor#2 Factor#3 Factor#4 Factor#1 Factor#2 Factor#3 Factor#4

Number of vehicles — — — — 0.526 — — —
Truck type — — — — 0.400 — — —
Manner of collision — — — — 0.463 — — —
DUI 0.431 — — — 0.458 — — —
Number of injured 0.751 — — — — — — —
Number of killed 0.447 — — — — — — —
Season 0.710 — — — 0.657 — —
Road condition — 0.824 — — — 0.847 — —
Reported weather — — — — — 0.597 — —
Speeding 0.667 — — — — — —
Lighting condition — — −0.803 — — — −0.782 —
Hourly volume — — 0.921 — — — 0.879
Truck hourly volume — — 0.943 — — — 0.913 —
Lanes surface type — — — 0.775 — — — 0.795
Median width — — — −0.678 — — — −0.727
Median type — — — 0.405 — — — 0.577
Shoulder surface type — — — 0.786 — — — 0.844

Table 3. Item reliability index for the investigated indicator variables

Indicator variable

Obtained factors and item reliability index (R2)

Single-truck crashes Multivehicle truck crashes

Crash
severity

Adverse
driving

conditions
Interaction
with traffic

Roadway
factors

Crash
severity

Adverse
driving

conditions
Interaction
with traffic

Roadway
factors

Number of vehicles — — — — 0.570 — — —
Manner of collision — — — — 0.630 — — —
Number of vehicles — — — — 0.456 — — —
DUI 0.418 — — — — — — —
Number of injured 0.451 — — — — — — —
Number of killed 0.525 — — — — — — —
Season — 0.524 — — — 0.567 — —
Road condition — 0.815 — — — 0.399 — —
Reported weather — 0.424 — — — 0.567 — —
Speeding — 0.474 — — — 0.692 — —
Lighting condition — — 0.395 — — — 0.397 —
Hourly volume — — 0.886 — — — 0.879 —
Truck hourly volume — — 0.984 — — — 0.936 —
Lanes surface type — — — 0.475 — — — 0.396
Median width — — — 0.410 — — — 0.886
Median type — — — 0.529 — — — 0.503
Shoulder surface type — — — 0.737 — — — 0.656
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advantages as it can handle complex relationships (indirect, multi-
ple, and reverse relationships) between exogenous and endogenous
variables (Kervick et al. 2015). It quantifies unmeasurable variables
by developing latent variables using the observed variables. More-
over, it simultaneously estimates the path coefficients of the rela-
tionships between the latent variables in the context of a full model.

Model Development

SEM could be defined as a multivariate statistical analysis that ana-
lyzes structural relationships between the measurement model and
latent constructs in which endogenous and exogenous variables are
analyzed (Kaplan 2000). The SEM assumes a directional relation-
ship between the developed latent variables resulting from the CFA.
The SEM consists of two major components; (1) the measurement
model, which specifies the significant variables that can measure
each constructed latent variable with an exogenous model (x-meas-
urement model) and an endogenous model (y-measurement model),
and (2) the structural model, which specifies the significant direc-
tion of prediction between the exogenous model and the endog-
enous model.

The measurement model is basically developed in the CFA
phase. In the structural model, simultaneous equations are formed
by linking the exogenous and endogenous variables (Hassan 2011).
To avoid identification and convergence issues, a minimum number
of three indicator variables should measure each developed latent
variable (Byrne 1998). Additionally, it is advised to use a maximum
of 30 indicator variables to obtain a converged model and to evade
model fitting issues (Hatcher and O’Rourke 2013).

It is worth mentioning that the estimation method used to de-
velop the SEM was the diagonal weighted least square (DWLS)
method. DWLS method does not have a specific distributional
assumption toward the data (Li 2016; Rhemtulla et al. 2012).
Among the other estimation methods, DWLS was designed to deal
specifically with ordinal data. Several studies investigated the val-
idity of using the DWLS estimation method with ordinal data and
found that it led to unbiased results (Beauducel and Herzberg 2006;
Forero et al. 2009; Lei 2009; Yang-Wallentin et al. 2010).

The sample size is one of the important factors to develop SEM,
as it is based on the large sample theory (Hatcher and O’Rourke
2013). Various studies had asserted the required minimum sample
size to conduct a SEM. A study showed that a minimum of 300
observations is required to develop the SEM (Hatcher and
O’Rourke 2013). However, other studies showed that a minimum
sample size of 200 would be adequate to meet the assumptions of
the large sample theory (Hatcher and O’Rourke 2013). Another
study showed that a ratio of 10∶1 for the number of observations
to the number of investigated indicator variables should be achieved
to obtain an adequate sample size (Suhr 2006). To measure the
adequacy of the sample size used in the analysis, it was suggested
to assess the statistical power of the developed SEM (Hatcher and
O’Rourke 2013). To determine the statistical power of the model,
the confidence intervals surrounding the RMSEA should be evalu-
ated as well as the RMSEA value. An RMSEA value less than or
equal to 0.08 suggests adequate statistical power. Fig. 2 shows the
structure map and the different elements of the SEM. The measure-
ment models could be expressed as shown in Eq. (1), and the struc-
tural model is given in Eq. (2) (Lee et al. 2008;Wang and Qin 2014)

�
y

x

�
¼

�
λy 0

0 λx

��
η

ξ

�
þ
�
ε

δ

�
ð1Þ

η ¼ βη þ Γξ þ ζ ð2Þ

Several trials were attempted in developing the models where
variables were used in several forms and transformations. Initially,
the utilized variable used was in their original recorded format
without clustering. Additionally, clustering was tested with impor-
tant variables reviled from the results obtained from the CART
model. While SEM was initially derived to consider only continu-
ous and discrete variables, several studies have applied SEM with
categorical variables, especially with survey analysis. Categorical
variables could be utilized in the SEM as exogenous or endogenous
variables. Having a binary, nominal, or ordinal categorical variable
might cause a problem as there cannot be a single path arrow for
each category with a specific coefficient. Accordingly, this behav-
ior presents a challenge for parameterizing path diagrams. To over-
come this limitation, for binary variables, the values were coded as 0
and 1, where the model was set as numeric. For other nominal and
ordinal variables, dummy variables were created for each level in
which the model treats them as a set of binary variables. In this re-
search, the approach of converting nominal and ordinal variables
was feasible as the maximum number of levels in most of the in-
vestigated variables was two levels, except for only one variable that
had five levels. With other categorical variables that include more
than five levels, other alternative approaches such as the Lavaan
procedure could be utilized (Rosseel 2014).

Classification Tree Results

Crash severity was selected as the dependent variable for the de-
veloped models, using two severity levels of fatal and injury (F+I)
representing and property damage only (PDO) crashes of Fig. 3
represent the CHAID model for the single-vehicle truck crashes,
while Fig. 4 is for the multivehicle truck crashes. The CHAID re-
sulting tree for the single-vehicle truck crashes, in Fig. 3, had a
depth level of five with 19 nodes. The model selected the variables
of road surface conditions, gender, guardrails, rumble strips, re-
ported weather conditions, season, truck hourly volume, median
type, and visibility level to classify the single-vehicle truck crashes.
Road surface conditions was selected as the first variable to affect
the severity of the single vehicle truck crashes, in which most of the
crashes occurs in wet surface conditions (a total of 72.7%). When
road surface is dry, the absence of guardrails at clear weather con-
ditions is involved in 19.7% of the single-vehicle truck crashes. The
multivehicle truck crashes model had 24 nodes with a tree depth of
4 levels as presented in Fig. 4. Collision type, age, speeding, pave-
ment surface type, road surface condition, traffic volumes, lighting
conditions, and day of week were the variables considered in the

Fig. 2. Structural map and the elements of the SEM.
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developed model. Fig. 4 shows that collision type was selected as
the most important variable affecting the multivehicle truck
crashes, resulting into three initial nodes. It is worth mentioning
that different variables describe each crash type selected by the
CHAID model. Most angle crashes involved older age groups

(17.3%) were only 5.4% involved young age groups, where the
identified age threshold was 27 years old. Road surface condition
was the factor affecting the severity of front crashes, in which 27%
of them occurred in slippery surface conditions, and 16.1% in dry
conditions. On the other hand, speeding was the variable affecting

Fig. 3. Single-vehicle truck crashes classification tree.
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Fig. 4. Multivehicle truck crashes classification tree.

© ASCE 05023008-9 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2024, 150(1): 05023008 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
N

or
th

 D
ak

ot
a 

on
 1

0/
30

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



collisions with a fixed object representing 10.6%. In addition, Fig. 4
shows a total of 7.9% of multivehicle truck crashes occurred in
slippery conditions and involving no speeding were a fixed object
crashes

SEM Results for Single and Multivehicle Truck Crashes

Figs. 5 and 6 show the developed path model to estimate the
crash severity of track-related crashes. The latent variables are
presented with oval shapes, rectangular shapes represent the

Fig. 5. SEM of single-truck related crashes.

Fig. 6. SEM of multivehicle truck-related crashes.
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indicator variables, and the arrows represent the direction of the
model. Path coefficients (estimate) are provided on the top of the
path arrows. The obtained standard error and the significance
level presented in the form of the t-value are provided below
the path arrow. For the two developed models, the crash severity
latent variable was considered the endogenous variable. Direct
and indirect relationships could be observed from the developed
models. Direct relationship occurs when the exogenous variable is
directly connected to the endogenous latent variable (i.e., interac-
tion with traffic is directly connected to the crash severity). Like-
wise, the indirect relationship occurs when the exogenous latent
variable is connected to the endogenous latent variable through an
intermediate exogenous latent variable (i.e., the roadway informa-
tion is indirectly connected to the crash severity). The provided
path coefficients demonstrate the standardized estimates for the
linear equations, in which all the provided coefficients were sig-
nificant at a 95% confidence level.

Interpretation of the Measurement Models

For both developed SEMs, three indicator variables were factored
in to express the latent variable “interaction with traffic.” Two of
these three indicator variables had a positive estimate, indicating a
higher interaction with traffic was obtained with the increase in the
hourly traffic and the hourly truck traffic. The estimates showed
that for every unit increase in hourly traffic and hourly truck traffic,
the interaction latent variable increases by 0.36 and 0.856 units
for the single-truck crashes model and 0.97 and 0.937 units for mul-
tivehicle truck crashes, respectively. Lighting conditions had a neg-
ative sign, indicating a lower interaction with traffic was obtained at
nighttime. This result is due to the lower traffic volumes obtained at
nighttime compared to daytime.

The exogenous latent variable named “adverse driving condi-
tions” was measured with four indicator variables, in which all of
them had a positive estimate. The estimate of the season variable
indicates that more challenging driving conditions were obtained in
winter compared to summer, with a coefficient of 0.559 for the
single-truck model and 0.581 for multivehicle truck model. More-
over, adverse road surface conditions increase the adverse driving
conditions, which could be due to the lower coefficient of friction.
Furthermore, the increase in the severity of the reported weather
provided more complex driving conditions. Additionally, speeding
was found to affect the adverse driving conditions latent variable.
The estimate showed that motorists tended to drive above appro-
priate driving speeds in adverse weather conditions.

The fourth exogenous latent variable named “roadway factors”
showed that rigid pavement (concrete pavement) for carriageways
and shoulders was among the factors that increased the crash se-
verity for trucks, with coefficients equal to 0.689 and 0.760 for
single-truck and multivehicle truck SEMs, respectively. Addition-
ally, depressed and wide medians increased the crash injury se-
verity of truck-related crashes. The measurement model for the

single-vehicle truck crashes showed that three indicator variables
form the severity of the crash as an endogenous latent variable. The
three indicator variables were the number of injured, the number of
killed, and driving under the influence (DUI). The coefficient es-
timates showed that the crash severity would increase with the in-
crease in the three indicator variables. The DUI variable was a
binary variable with a zero assigned to no DUI involvement and
one for DUI involved in the crash. The endogenous latent variable
for the multivehicle truck crashes showed that one-unit increase in
the number of killed and the number of vehicles involved in the
crash would increase the severity of the multivehicle truck crash
by 0.073 and 0.181 units, respectively. Additionally, the manner
of collision has a significant effect on the severity of multivehicle
truck crashes.

Interpretation of the Structural Models

The path model for the single-truck crashes showed that the road-
way factors had an indirect effect on the crash severity of the single-
truck-related crashes. The positive sign of the path coefficients for
the roadway factors and the adverse driving conditions showed that
a one-unit increase in roadway factors would worsen the driving
conditions by 0.160 units and indirectly contribute to increasing
the single-truck-related crashes by 0.402 units. Additionally, the
increase in traffic interaction would increase the single-truck-
related crashes by 0.087 units.

The path model of the multivehicle truck crashes showed that
the interaction with traffic and adverse driving conditions had a
significant effect on increasing the outcome severity for truck
crashes. The coefficients showed that for each unit increase in
the interaction with traffic, the crash severity increases by 0.357
units and 0.147 units for each unit increase in adverse driving con-
ditions. Roadway factors had an indirect effect on crash severity, as
pavement type (concrete), median type (depressed), and increase in
median width increase the adverse driving conditions, increasing
the truck crash severity. Moreover, the path model showed that
the traffic interaction latent variable affects the adverse driving
conditions.

Goodness of Fit and Statistical Power

To assess the model fit, several thresholds should be met. Hooper
et al. (2008) provided guidelines to assess the model fit, which
was considered as the assessment golden rules (Hooper et al. 2008).
The several provided model fit indices reflect a different aspect of
model fit. Table 4 concluded the obtained model fit indices and
the threshold for each index. Several path models were developed,
however, and the model with the lowest Akaike information cri-
terion (AIC) was reported in this study.

Although some of the obtained model fit indices did not meet
the threshold minimum/maximum limits, the model fit for both
the developed models provide an acceptable fit, given the slight

Table 4. Model fit indices and statistical power summary for the developed SEMs

Model fit index

Obtained values of indices

Threshold valuesSingle-truck crash Multivehicle truck crash

Standardized root mean square residual (SRMR) 0.0544 0.0506 <0.050
Goodness of fit index (GFI) 0.9201 0.9126 >0.900
Parsimony index—adjusted GFI (AGFI) 0.8950 0.8909 >0.900
RMSEA estimate 0.0573 0.0603 <0.055
Bentler comparative fit index (CFI) 0.9029 0.8990 >0.900
Akaike information criterion (AIC) 1,353 1,925 Lower is better
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variation from the limits. The obtained SRMRs were above the
threshold limit; however, values below 0.08 would provide a good
model fit (Hu and Bentler 1999). Additionally, the parsimony index
was slightly below the limits of the acceptable threshold. The stat-
istical power of the model could be measured using the RMSEA
value. Even though the RMSEAwas slightly above the threshold, it
is still considered to have adequate statistical power as the obtained
value is below 0.08. The obtained RMSEA confidence intervals
provided a significance level of 90%. Additionally, the RMSEA
is considered a less preferable index to assess the goodness of fit
when having relatively large sample sizes (Hu and Bentler 1999).

Comparative Discussion for the Single-Truck and
the Multivehicle Truck Crash Models

Similar latent variables constructed to form the measurement mod-
els were found for the two investigated crash types; single-truck
crashes, and multivehicle truck crashes. However, their direct/
indirect effects, as well as the magnitude of estimates on the crash
severity of large trucks were different. Table 5 concludes the direct,
indirect, and total effects of the latent variables on the investigated
crash severity for large trucks.

To determine the indirect effect of a latent variable on the endog-
enous latent variable, the estimated coefficients on the path should
be multiplied. For example, the indirect effect of the interaction
with traffic on crash severity of multivehicle truck crashes is
0.025, which is the product of 0.173 multiplied by 0.147. The total
effect is the calculated general effect for the direct and indirect ef-
fects on the endogenous variable. The total effect could be calcu-
lated using the estimates obtained from the path model by adding
the direct and indirect effects. For the same example, adding the
direct (0.357) and indirect effects (0.025) for the interaction with
traffic on crash severity of multivehicle truck crashes would pro-
vide a total effect of 0.382.

Interaction with traffic was significant for both models. It had
only a direct effect on single-truck crashes, while it had a direct
and indirect effect on the outcome severity of multivehicle truck
crashes. Its total effect on single-truck crashes was lower compared
to its effect on multivehicle truck crashes. This result shows that the
impact of one-unit increase in the “interaction with surrounding traf-
fic” on the severity of multivehicle truck crashes is 4.3 times higher
compared to its impact on the severity of single-truck crashes.

Adverse driving conditions had the highest impact on single-
truck crashes with a total effect of 0.402, which is more than
2.7 times its impact on multivehicle truck crashes. The increased
effect of adverse conditions on the severity of single-truck crashes
could be due to the high center of gravity (CG) for trucks. The high

truck’s CG could worsen the controllability of trucks when encoun-
tering slippery road surfaces or high wind speeds (Gaweesh et al.
2022; Irfan Ahmed et al. 2020).

The roadway factors had an indirect total effect on truck crash
severity for both models. Its impact was nearly 1.6 times higher on
the truck crash severity for single-truck crashes compared to the
multivehicle truck crashes. For the developed models, the roadway
factors affect the crash severity of trucks through the adverse driving
conditions. This implies that roadway factors become a significant
indicator when encountering adverse driving conditions explained
by severe weather conditions, adverse road surface, and speeding.

Suggested Improvements to Enhance Truck
Traffic Safety

The goal of this study is to evaluate the safety of commercial trucks
by identifying observed variables as well as latent variables that
might increase the crash severity of trucks. This will help local
and regional transportation agencies in regions that share similar
characteristics to determine countermeasures and treatments that
could help in enhancing traffic safety and operations for commer-
cial vehicles.

The utilized approaches clarified several factors that contribute
to an increased truck crash severity on interstate roads. As com-
monly known, the traffic as the main crash exposure was the main
factor contributing to increased crash severity. However, this study
utilized hourly volume, as well as truck hourly volume, to show
their impact on increasing crash severity. The analysis showed that
other factors were, directly or indirectly, coupled with traffic vol-
umes in causing an increased crash severity. Usually, visibility and
weather conditions when accompanied by higher traffic volumes
increase crash injury severity. The results showed that the presence
of guardrails is important to single-truck crashes, especially in re-
duced visibility. This implies that guardrails and lateral obstructions
as roadside elements might help truck drivers in identifying road-
way alignment in limited visibility conditions. Although delineators
are always presented at the roadside, enhancing their maintenance by
installing better reflective sheets would help to increase their conspi-
cuity. This would help drivers to better detect the road alignment,
especially in adverse weather events. Moreover, longitudinal bright
color strips to the roadside barriers would help to easily detect the
road alignment at locations with challenging road geometry at events
with reduced visibility, and at locations that encounter increased run-
off road crashes.

This result is in line with the importance of rumble strips to iden-
tify road alignment for truck drivers. In the winter season, with the
presence of rumble strips, increased crash severity was observed.

Table 5. Direct, indirect, and total effects for single-truck and multivehicle truck SEM

Latent variable

Direct effect Indirect effect Total effect

Estimate Standard error Estimate Estimate

Effects on the crash severity of the single-truck crash SEM
Interaction with traffic 0.087 0.024 NA 0.087a

Adverse driving conditions 0.402 0.048 NA 0.402a

Roadway factors NA NA 0.064 0.064b

Effects on the crash severity of multivehicle truck crash SEM
Interaction with traffic 0.357 0.032 0.025 0.382
Adverse driving conditions 0.147 0.024 NA 0.147a

Roadway factors NA NA 0.039 0.039b

aThe total expresses the direct effect only (no indirect effect is presented).
bThe total expresses the indirect effect only (no direct effect is presented).
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However, this result seems contradicting because in the winter
season, rumble strips on I-80 are completely covered with snow,
potentially diminishing their role in alerting drivers when departing
the roadway. With the excessive number of rural roadway miles and
limited winter maintenance resources, it is challenging to timely
clear travel lanes and shoulders. Several DOTs adopt tow plows
(TPs) to increase the efficiency and productivity of the winter main-
tenance operation. It would be suitable to include TPs in winter
operations to include shoulders in snow removal operations instead
of using them as snow storage areas.

Speeding was also observed as one of the factors coupled with
truck volumes, the presence of VSL, and reduced visibility to cause
an increased truck crash severity. This result clarifies the low com-
pliance rates for the provided speed limits within I-80. Endorsement
of increased speed enforcement is recommended, as well as con-
ducting public campaigns to educate motorists about the dangerous
outcomes of speeding during adverse weather conditions, which is
in agreement with previous studies (Ahmed et al. 2011; Ahmed and
Abdel-aty 2012; Gaweesh and Ahmed 2019; Yu et al. 2013). Addi-
tionally, this might be correlated with the disseminated variable
speed limits within I-80. If the provided speeds do not match the
current driving conditions, motorists tend to over speed resulting
in high-speed variability. The increased speed variability within
the corridor sections may result in increased crash likelihood. Thus,
enhancing the current VSL algorithms as well as adding more sec-
tions with VSL corridors would be recommended.

The results of this study highlighted the importance of increas-
ing the situational awareness of commercial truck drivers about
upcoming hazardous events. This could be performed by commu-
nicating information regarding upcoming adverse weather events,
bad road surface conditions, challenging roadway geometry, and
traffic conditions in the connected vehicle (CV) pilot deployment
on I-80. By communicating such information, truck drivers’ pre-
paredness for encountering dangerous events will be enhanced.

Conclusions and Discussions

The trucking industry has a significant effect on the US economy.
Commercial trucks are responsible for transporting a significant
amount of freight tonnage. With the anticipated increase in truck
traffic, concerns related to traffic safety are raised. Investigating
factors that might reduce crash frequency and/or crash severity
would provide insights to develop mitigation plans and effective
countermeasures. Several studies were conducted with the focus of
determining the influential factor that increases the severity of
truck-related crashes. Most of these studies utilized discrete choice
models to examine the relationship between the severity of a crash
and the indicator variables by developing a direct relationship be-
tween them. However, the discrete choice model cannot explain the
complex interrelationship between the indicator variables and the
crash severity.

This study helped in enhancing traffic safety for commercial
trucks on Wyoming interstate roads by identifying the most impor-
tant factors as well as the latent factors that influence the severity
level of truck crashes. This study presented a systematic approach
to developing the measurement model of the SEM, in which deci-
sion trees, EFA, CFA, and engineering judgment were used to
select variables that will be used to develop the measurement
models. The variation and covariation within and between the con-
structed measurement models were accounted for by using the SEM
as it is considered one of its advantages. From the dataset perspec-
tive, unlike other studies, a disaggregate level of the traffic volumes
as the main crash exposure was used along with several datasets

(i.e. crash data, environmental data, temporal data, roadway factors,
and driver factors) to account for other confounding factors.
Furthermore, direct and indirect relationships between factors that
lead to increased crash severity of large trucks were determined.
Direct and indirect effects would clarify which latent variables
has a significant effect only with the presence of other variables.

The SEM clarified that the indicator variables measuring the
crash severity are mostly related to the nature of the crash. The
number of vehicles involved in the crash was the most significant
variable that measure the crash severity of multivehicle truck
crashes. On the other hand, the number of injured people in the
crash was the most significant variable that measures the crash se-
verity of single-truck crashes. Additionally, the developed path
model highlights the difference between the natures of the two crash
types. The interaction with the surrounding traffic was the most sig-
nificant latent variable affecting the crash severity of multivehicle
truck crashes and the adverse weather conditions were the most sig-
nificant latent variable affecting the crash severity of single-truck
crashes. The results showed that speeding in adverse road and
weather conditions were among the variables that increased the
severity of truck-related crashes.
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